Tech News World, Contacts Samsung Galaxy, Windows 8, Nokia Lumia, Quad Core Smart Phones, HTC smartphone, Google Nexus, MacBook, PayPal

Saturday, July 6, 2013

Path Delay Calculation in Wireless Sensor Networks using Matlab

Path Delay Calculation in Wireless Sensor Networks using Matlab - Although I work in the office and a lot of work that makes me tired but still I make a blog Tech News World and still will update it for you because this is part of my hobby who likes the world of technology, especially about the gadget, now we will discuss first about Path Delay Calculation in Wireless Sensor Networks using Matlab because it is the topic that you are now looking for, please refer to the information I provide in the guarantee for you,

Articles : Path Delay Calculation in Wireless Sensor Networks using Matlab
full Link : Path Delay Calculation in Wireless Sensor Networks using Matlab

You can also see our article on:


Path Delay Calculation in Wireless Sensor Networks using Matlab


Delay Measurement Time Synchronization 

For Wireless Sensor Networks 



A synchronized network time is essential for energy efficient scheduling, data fusion, localization and many other wireless sensor networks (WSN) applications. This paper studies the special issue of time synchronization in tiny sensor networking devices and presents a Delay Measurement Time Synchronization (DMTS) technique applicable for both single hop and multi-hop wireless sensor networks. DMTS is flexible and lightweight. For a single hop WSN of n nodes, it takes only one time broadcast to synchronize the network regardless the  value of n. As aresult it adds minimum network traffic and is energy efficient, because radio communication is a significant source of energy-consumption in a WSN. For a multi-hop WSN of n nodes, DMTS requires n time message exchanges in total in order to synchronize the whole network. 
DMTS is implemented in Berkeley motes within Tiny OS framework. It is a service available 
to TinyOS applications. Our test results show that DMTS achieves a time synchronization 
accuracy of 1 clock tick in single-hop WSNs. For a 2 hop WSN, the average time 
synchronization error is approximately 1.5 clock ticks. 
DMTS scheme is currently used in several applications running on Berkeley motes to provide 

network timestamps and global scheduling





Algorithm


1. deploy uniform random node distribution
i. unknown positions of sensor nodes
(for GSP or RSP strategy)
(or)
ii. known positions of sensor nodes
(for ISP, GASP or MonteCarlo strategy)
calculate candidate locations
2. iteration:
i. place sensor nodes
ii. place sink strategy
iii. connect all nodes
iv. check connectivity of network
v. choose the nearest sink
vi. calculate the maximum delay
3. repeat 2 according to the sink placement strategy
4. select the locations with minimum worst-case delay


######################################################################



A = [   0 5.518 0 0 0 8.276 13.794 0 0 0 0 0 0 0;

        4.622 0 4.622 0 0 0 13.865 0 0 0 0 0 0 0;
        0 1.241 0 3.724 0 0 7.448 0 0 0 0 0 0 0;
        0 0 1.442 0 2.883 0 5.766 0 4.325 0 0 0 0 0;
        0 0 0 3.068 0 1.524 6.136 4.602 0 0 0 0 0 0;
        1.616 0 0 0 4.848 0 9.696 0 0 0 0 0 0 0;
        6.350 6.350 6.350 6.350 6.350 6.350 2.540 0 0 0 0 0 0 22.859;
        0 0 0 0 1.260 0 0 0 2.520 0 0 0 3.779 5.039;
        0 0 0 1.274 0 0 0 2.549 0 3.823 0 0 0 5.097;
        0 0 0 0 0 0 0 0 1.646 0 2.469 0 0 1.646;
        0 0 0 0 0 0 0 0 0 1.877 0 2.503 0 1.252;
        0 0 0 0 0 0 0 0 0 0 2.390 0 1.792 1.195;
        0 0 0 0 0 0 0 1.195 0 0 0 1.793 0 4.780;
        0 0 0 0 0 0 4.252 4.252 4.252 6.378 7.654 7.654 6.378 1.701;
    ];
L = [];
U = [];
S = [20 20 30 30 30 30  60 30 30 20 20 20 20 60];
for i = 1:14
    s=0;
    u=0;
    k=0;
    for j = 1:14
        s = s + A(j,i);
        if(A(i,j)~=0)
            u = u + S(j);
        end
    end
    L = [L,s];
    U = [U,u];
end
E = [];
for i = 1:14
    s = L(i)/(U(i)-L(i));
    E = [E,s];
end
P = [];
n = input('No. of nodes in path : ');
for i = 1:n
    k = input('Node : ');
    P = [P,k];
end
delay = 0;
for i = 1:n
    delay = delay + E(P(i));
end

#####################################################################



so much information about Path Delay Calculation in Wireless Sensor Networks using Matlab

hopefully information Path Delay Calculation in Wireless Sensor Networks using Matlab can provide useful knowledge for you in getting information about the latest gadgets,

just finished your reading article about Path Delay Calculation in Wireless Sensor Networks using Matlab if you feel this article useful for you please bookmark or share using link http://aziin5teens.blogspot.com/2013/07/path-delay-calculation-in-wireless.html for more people know

Tag :
Share on Facebook
Share on Twitter
Share on Google+
Tags :

Related : Path Delay Calculation in Wireless Sensor Networks using Matlab

0 comments:

Post a Comment